Co-fabrication of Micro-Coaxial Interconnects and Substrate Junctions for Multi-Chip Microelectronic Systems

Speaker: Daniela Torres^{1,2}, Anthony Kopa¹, Robert White², Caprice Gray¹ – ¹Draper, Cambridge, MA; ²Tufts University, Medford, MA

E-Mail: <u>Dtorres@draper.com</u>

Abstract

Micro-coaxial cables (MCCs), with outer diameter of 100 μ m or less, enable a new microelectronics packaging platform that will greatly reduce the time required to design and fabricate complex multi-chip microelectronic assemblies. Low-inductance MCCs for DC power and 50 Ω MCCs for signals eliminate the need for lengthy simulations because each individually shielded MCC provides sufficient isolation to prevent coupling, electro-magnetic interference (EMI), and crosstalk. The in-situ fabrication method presented here utilizes only conventional wire bonding and microfabrication techniques, providing a high-feasibility path toward a new interconnect paradigm based on MCCs.

Each cable measured consists of a 25.4µm gold bond wire coated first with a dielectric and then a 5µm thick gold shield. For DC power distribution, the dielectrics evaluated are 1µm Parylene and 100nm HfO₂. Their characteristic impedances are 2.0-3.5 Ω and 0.07-0.13 Ω , respectively. A third MCC, appropriate for signals, has 38µm Parylene and a characteristic impedance of 45-52 Ω . Further characterization includes crosstalk isolation and thermal shock reliability.